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Using the in tegra l  f ea tu re s  of the sys t em (constancy of bed r e s i s t a n c e  and solid phase  m a s s ) ,  
a s y s t e m  of L a g r a n g e - E  uler  equations is der ived  by a var ia t ional  method and a quali tat ive 
analys is  of the fea tu res  of the hydrodynamics  of a gaseous fluidized s y s t e m  is conducted.  

Because  of the wide use of f luidized s y s t e m s  in chemica l  technology, it is impor tant  to know the hy-  
drodynamic laws which de te rmine ,  to a cons iderable  extent ,  the p r o c e s s e s  taking place in the bed.  A spe -  
c ia l  fea ture  of the gaseous  fluidized bed is the nonuniformity  of the volumetr ic  par t ic le  concentra t ion and 
the outburst  of gas  bubbles through the bed, a fea ture  which makes  for  poor  contact with the solid.  A good 
deal  of informat ion  has accumula ted  as to the nature  of mot ion of the bubbles [1, 2, 10], and they have been 
t r e a t ed  in the f r a m e w o r k  of the t w o - p h a s e - s y s t e m  model  [1, 10]. The re  have appeared  s imul taneous ly  s e v -  
e r a l  pape r s  in which [3-6, 9] s t a t i s t i ca l  methods  a r e  used to invest igate  the hydrodynamics  of a fluidized 
sys t em;  this r equ i r e s  detai led knowledge of the s ta t i s t i ca l  c h a r a c t e r i s t i c s  of the ensemble  under examin a -  
t ion.  

We have a t tempted  to use the var ia t iona l  approach  to desc r ibe  the hydrodynamics  of a fluidized s y s -  
t e m ,  based  on a knowledge of i ts  in tegra l  c h a r a c t e r i s t i c s  (bed r e s i s t a n c e  independent of gas  f i l t ra t ion  speed 
over  a wide range,  m a s s  of solid pa r t i c l e s  in the bed volume constant) .  

We consider  a t rans i t ion  p r o c e s s  in a f luidized bed.  The speed at the inlet is inc reased  s teadi ly  f rom 
i ts  initial  value (fluidize s t a r t  speed) to some ambient  value (below the speed solid pa r t i c l e s  a r e  c a r r i e d  
away f rom the bed). 

Within the bed we single out an e lement  dV, apprec iab ly  l a r g e r  than the volume of one pa r t i c l e ,  and 
introduce ave rage  values of the speed of motion of the solid and gas  phases ,  w i and vi, r e spec t ive ly .  The 
energy  lost  by the gas  in f i l te r ing through the bed of pa r t i c l e s  during the t rans i t ion  p r o c e s s  t ime  ( t2- t l )  
can be desc r ibed  by the following in tegra l :  

t~ 2 

t, V(t) 

and we ignore the potential  ene rgy  of the gas  in the field of g rav i ty  as  being ve ry  smal l .  

Assuming  that such a p ic ture  of the motion holds in the two-phase  sys tem (gas plus solid pa r t i c l e s ) ,  
we find that the energy  expended by the gas  as it f i l t e r s  through the sys tem will be a min imum.  This  condi-  
t ion is e x p r e s s e d  ma thema t i ca l ly  by equating the var ia t ion  of in tegra l  (1) to ze ro ,  i . e . ,  

fz 

d (._pgVi 2 (2) 
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If Eq.  (2) is to desc r ibe  the p r o c e s s e s  occur r ing  in the fludized bed, the speciaI  phys ica l  f ea tu res  of 
the sy s t em mus t  be taken into aecotmt.  These  will be i s o p e r i m e t r i c  conditions fo r  the p rob lem in seeking 
a minimum, of the functional (1). 

One bas ic  fea ture  of the s y s t e m  is that the m a s s  of solid pa r t i c l e s  in the bed is constant ,  i .e . ,  no p a r -  
t i t l e s  a re  c a r r i e d  out of the bed by the gas  s t r e a m .  This  condition can be wri t ten as :  

Inst i tute of Heat and Mass T r a n s f e r ,  Academy of Sciences of the Be lo russ i an  SSR, Minsk. T rans l a t ed  
form Inzhenerno-Ftzicheskii Zhurnal, Vol. 21, No. 6, pp. 1005-1011, December, 1971. Original article sub- 
mitted January. 29, 1971. 

�9 1974 Consultants Bureau, a division of  Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. 
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A 

copy of this article is available from the publisher for $15.00. 

1498 



lz 

.!" I"  dvdt = c , .  (at 
** V(t) 

We obtain  a second  i s o p e r i m e t r i c  condi t ion f r o m  the fol lowing c o n s i d e r a t i o n s .  We wr i t e  the power  

balance for  the bed as 

I / f ; (1 - -  e) 7 q- ap dY = - -  e d r -  dV - -  e ~ ( ~ g z )  dV - -  TdV.  (4) 

V(t) V(t) V~) V(t) 

Equation (4) indicates that the energy  expended by the gas in the bed goes to inc rease  the speed of the 
solid pa r t i c l e s ,  to expansion of the bed (i.e., inc rease  in the potential  energy  of pa r t i c l e s  in the field of 
gravi ty) ,  and to diss ipat ion.  These  a re  the t e r m s  on the right side of Eq. (4). 

Fo r  the spec ia l  case of t rans i t ion  conditions (steady fluidization),  Eq. (4) will take the fo rm 

(1 --e) ~ 4- ap d V = - -  TdV,  (5) 
g V 

since in that case the potential energy of the solid material as a whole and its Mnetic energy of motion re- 

main constant, i.e., 

d P- ~ dV = s - ~ -  (ppgZ) dV = O. 
~ -dT 

V V 

It follows from Eq. (5) that the steady case differs from the unsteady (transition) process in that the gas en- 
ergy goes only to dissipation. This manifests itself experimentally as resistance of the bed to the passage 
of gas through it. 

In analogy with electrical resistance, the resistance of the bed to gas flow is given in steady-state con- 

ditions by 

.! T d V  

Rs t v (7) 

Fo r  the uns teady case  the total  bed r e s i s t a n c e  is 

where  R T = 

RUlIS t 

(TdV/v0( t ) .  
v~'t) 

V o 

2 

e W dV s ~ - -  (gpgZ) dV 
~y 

v~f> + v(t~ + R~, (8) 
Vo (t) Vo (t) 

We assume that the transition process is rather slow (i.e., quasisteady) and 

Rst = RT. (9) 

Equation (9) means that the bed resistance to gas flow associated with dissipation in unsteady conditions is 
equal to the bed resistance under steady conditions. It is known [7] that the resistance of a fluidized bed is 
independent of the gas filtration speed, which means that If T is constant and a characteristic of the system. 

From Eqs. (4) and (9), following time-integration (during the transition process), we obtain a second 
isoperimetric condition of the variation problem (2): 

- -  ~ vo (0 
V(t) 

Thus ,  the hydrodynamics  of the f iuidized bed is de te rmined  by so lv ing  the var ia t iona l  p rob l em,  i .e . ,  
finding a conditional ex t r em um  of functional (1) with the i s o p e r i m e t r i c  conditions (3) and (10). As is known 
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[8], this kind of problem reduces to finding a condition-free extremum of the following functional: 

t~ 

I* = ~ f (F 4- )~F~ 4- )~F~)dVdt, 

where 

F~ = -- 

2 

4-ap , F~ = e ,  

( l - -e )  ~/-,d ( ~  4-ap )  4- e_dF(Pp._~4-d ppgZ) 

Vo (t) 

(11) 

i.e., to the problem 

6 ( j' (F 4- ~ael 4- ~:F2) dVdt = O. (12) 
i] v(t) 

It is known [8] that the extremals of functional (11) are determined by the Euler-Lagrange equations: 

4 

' ~ _ ~ 0  [ 0 _ ~  ~ O~ - -0  ( i--1 . . . . .  8), (13) 
Ox~ ~ Oyl,h] Oy i 

where ~ = F + KiF 1 + X2F2; Yi,k = OYi/OXk; Xl = x; x2 = Y; xs = z; x4 = t; Yl = Vx; Y2 = Vy; Ys = Vz; Y4 = Wx; 
Y5 = Wy; Y6 = Wz; YY = ~; Y8 = P. 

Equations (13) are a nonlinear sys tem of differential  equations in part ial  derivatives of f i rs t  order ,  
describing the hydrodynamics of the fluidized bed. The sys tem has eight equations for eight unknown func- 
tions (Yl. �9 �9 Ys), and is therefore  closed.  

Following a t ransformat ion  of Eq. (13) we write the hydrodynamic system of equations obtained for 
s teady conditions ((d/dt)v0(t) = O) in the following form : 

where 

0e 0 ( +  2) Ov~ cr Op ( k = l ,  2, 3), v~ Oe I - L - - -  v~v~ - -  - v~ + vl~ Ox~ - -  P g  
1 - - ~  Ot + 1 - - e  Ox~ Ox h - -  Ox h 

~n Oe 1 Oe 0 ( 1 2~ ~ C)~i 
e Ot + -g- whw~ = O& Ox~ ~ , ~ w i J - -  h - - + g 6 ~ ,  (k=1,2,3), Ox~ 

1 Oe 1 Oe Ovi 
- -  U ~  - -  , 

1 - -  e Ot qq 1 - -  e Ox i Ox i 

( 14- v ~ ) [ p p L ( v l ) @ a ~ _ t  4- a Op 
Ox~ 

Ovi Ovh 
L (vi) = vl - - d -  + v,~vi ax--7 ; 

v~ 4- ~'1 - -  ~o [ppL (wi) q- ppgW~] = 0, 

w. Ow~ +whwl  - -  
L(wl) = ~ Ot O& 

(14) 

(15) 

(16) 

(17) 

We multiply Eq. (16) t e r m - b y - t e r m  by v k and substitute it into Eq. (14); following some t r ans fo rma-  
tions we have 

Ox h 

It can be seen f rom Eq. (18) that the total gas energy inside the bed, equal to 1 /0_(1-~) ,  is independent of 
the coordinates and is a function of t ime.  Allowing for this ,  it follows f rom E q.~17) that the total part icle 
energy inside the bed (1/2)wt2 + gz, equal to 1/P~G is also a function only of t ime.  Then, f rom Eq. (15), fol-  
lowing t ransformat ions ,  we obtain finally the ma~ss balance equation for part icles 

0 (9pQ 0 (ppSWi). (19) 
Ot Ox i 

The analogous relat ion for the gas is Eq.  (16). Equations (14) and (15) are modified momentum balance 
equations for the gas and par t ic les ,  respect ively.  Equation (17) gives the energy balance in the sys tem.  
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In this study we do not introduce a detailed descr ip t ion of the nature and the laws of in teract ion be-  
tween the solid ma te r i a l  and the gas s t r e a m .  We replace  this by an integral  descr ipt ion of these i n t e r ac -  
t ions,  i .e.,  the power dissipat ion (9) in the bed, which we consider  as embodying the whole set of local cha r -  
ac te r i s t i c s  of the in teract ion between the gas s t r e am  and the solid ma te r i a l  in the fluidized bed. In this 
case the actual sys tem is rep laced  by the following simplif ied model .  Two mutually permeable  fluids, the 
energy of which at any t ime instant does not vary  throughout the space,  a re  in motion in continuum phase 
space.  The r e  is an energy drain with t ime (dissipation) in the sys tem,  this being also uniformly dis t r ibuted 
over  the phase space continuum. 

We examine the question of the possible exis tence of par t ic le  concentrat ion fluctuations in the bed in 
the region w z >> Wx, Wy. F r o m  Eq.  (15) we obtain 

(20) 

and, f rom Eq.  (17), 

Making the natura l  assumption that v z >> Vx, vy, we obtain 

av~ Ov~ 20vz (22) 
Ui  ~ V z  - ~ z  - -  

at at Oz 

With the same assumption,  f rom Eq. (16) we obtain 

v~ az I - -  e Oz " 

We evaluate the t e rm  v~ /pg .  O p / &  as follows: 

a Op a Op ~ a - ~  v~g~. 
#g at Og v~ O---~- ..og 

(23) 

(24) 

It can be seen  f rom the physical  meaning of the t e r m  Ale in Eq.  (i l)  that it descr ibes  the power going 
to hold par t i c les  in the bed and, the re fo re ,  

)~le ~ pp~zge. (25) 

Allowing for  Eqs .  (22)-(25), we convert  Eqs .  (20) ~ d  (21) to the form:  

w2 & f ( 0w, awy 1t (20a) 

We note that we can assume f rom the physical  sense  of Eq.  (11) that X1 and X2 a re  posit ive coeff ic ients .  

Let  w z be such that the difference appearing in Eq.  (20a) is posit ive;  we examine it under the condition 
OWx/0X > 0; 0Wy/0y > 0, i .e . ,  in a region where the par t i c les  a re  being acce le ra ted  horizontal ly .  It follows 
f rom Eq.  (20a) that 8e/Oz > 0, i .e . ,  e inc reases  with height.  On the other hand, it is c l ea r  f rom Eq.  (21a) that 
the left  side of that equation inc reases  under  these condit ions.  It is evident from the s t ruc tu re  of Eq.  (21a) 
that w z also i n c r e a s e s .  As w z i nc r ea se s ,  g-wz(0Wx/0X + 0Wy/Sy) and 0e/Oz both change sign. The right 
side of Eq.  (21a) will dec rease  with dec rease  of e, and the re fo re  w z will a lso dec rease  tmtil the gradient  of 
e along the z axis becomes posit ive again. Andthenevery th ing  is repeated .  

Thus ,  f rom the above reasoning it is c l ea r  that oscil lat ions in par t ic le  concentrat ion can exist  in the 
fluidized bed.  We substi tute into Eq.  (15) the value of ae/~t f rom Eq.  (16): 

a o w~ = w~ - - -  
u x ~  O& 

We investigate Eq.  (26) in three  special  cases :  

1) w z ~ 0, the pa r t i c les  only diverge or converge hor izontal ly .  F ro m  Eq.  (26) with k = 3 
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~ - - - - - - - e  g_~ a w~ (26a) ~z (v, -- w~t ox, ~ z  ' 

a) if e ~ o, then 8e/0x i --.~o; b) if e-~ 0, 0~/~x i is finite; 

2) Wy -~ 0, there is no motion of the particles in the y direction. From Eq. (26) with k = 2 

wy(v~_wl  ) 0e 0 I 2)] (26b) 

a) if ~ ~ 0, 8/ay((1/2)w~) ~ 0, then 8~/0xi--*.r b) if ~ 0 ,  0/Sy((1/2)w~) ~ 0, then 8~/0x i is finite; 

3) (vi-wi) -~ 0, the particles and the gas move with the same speed. From Eq. (26a) we have: a) ~--* 0, 
then ae/0x i is finite; b) if s ~ 0, then 0r  

Thus, we have shown qualitatively that there can be discontinuities in particle concentration in a 
fluidized system. The variation of the functional (12), which reflects expenditure of the gas stream energy 
in the transition process, describes the hydrodynamics of the fluidized bed in the approximation adopted, 
and elucidates its basic features (self-oscillations, discontinuities of particle concentration). 

P 
Rst, RT 

T 
t 

v i, wi 
v0(t), v0 

x i (i = 1, . . . .  4) 
Yi (i = 1, 2, 3) 
Yi (i = 7, 8) 

_ ~ C v ~ ;  

kl, k2 

_pg, pp 
v Z 

N O T A T I O N  

is the gas pressure;  
are,  respectively, the bed resistance under steady conditions, and that associated with 
dissipation in the transition process; 
is the dissipated power per unit volume of bed; 
is the time; 
are the gas and particle velocity, respectively; 
are the gas speeds at the bed entrance under unsteady and steady conditions of fluid- 
ization, respectively; 
are the coordinates x, y, z and time t, respectively; 
are the resolved components of the velocity of the particles along the axes x ,y ,  and z; 
represent 6, p; 

are the volume concentration of the particles and its mean value; 
are coefficients; 
is the gram-molecular weight of the perfect gas; 
are the gas and particle density, respectively; 
is the mean gas velocity. 
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