HYDRODYNAMICS OF A FLUIDIZED BED
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Using the integral features of the system (constancy of bed resistance and solid phase mass),
a system of Lagrange—-Euler equations is derived by a variational method and a qualifative
analysis of the features of the hydrodynamics of a gaseous fluidized system is conducted,

Because of the wide use of fluidized systems in chemical technology, it is important to know the hy-
drodynamic laws which determine, to a considerable extent, the processes taking place in the bed. A spe-
cial feature of the gaseous fluidized bed is the nonuniformity of the volumetric particle concentration and
the outburst of gas bubbles through the bed, a feature which makes for poor contact with the solid, A good
deal of information has accumulated as to the nature of motion of the bubbles [1, 2, 10], and they have been
treated in the framework of the two-phase-system model [1, 10]. There have appeared simultaneously sev~
eral papers in which [3-6, 9] statistical methods are used to investigate the hydrodynamics of a fluidized
system; this requires detailed knowledge of the statistical characteristics of the ensemble under examina-
tion,

We have attempted to use the variational approach to describe the hydrodynamics of a fluidized sys-
tem, based on a knowledge of its integral characteristics (bed resistance independent of gas filtration speed
over a wide range, mass of solid particles in the bed volume constant),

We consider a transition process in a fluidized bed. The speed at the inlet is increased steadily from
its initial value (fluidize start speed) to some ambient value (below the speed solid particles are carried
away from the bed),

Within the bed we single out an element dV, appreciably larger than the volume of one particle, and
introduce average values of the speed of motion of the solid and gas phases, w; and v;, respectively, The
energy lost by the gas in filtering through the bed of particles during the transition process time (tz—t)
can he described by the following integral:
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and we ignore the potential energy of the gas in the field of gravity as being very small,

Assuming that such a picture of the motion holds in the two-phase system (gas plus solid particles),
we find that the energy expended by the gas as it filters through the system will be a minimum, This condi-
tion is expressed mathematically by equating the variation of integral (1) to zero, i.e.,
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If Eq. (2) is to describe the processes occurring in the fludized bed, the special physical features of
the system must be taken into account. These will be isoperimetric conditions for the problem in seeking
a minimum of the functional (1).

One basic feature of the system is that the mags of solid particles in the bed is constant, i.e., no par-
ticles are carried out of the bed by the gas stream, This condition can be written as:
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We obtain a second isoperimetric condition from the following considerations. We write the power
balance for the bed as
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Equation (4) indicates that the energy expended by the gas in the bed goes to increase the speed of the
solid particles, to expansion of the bed (i.e., increase in the potential energy of particles in the field of
gravity), and to dissipation, These are the terms on the right side of Eq. (4).

For the special case of transition conditions (steady fluidization), Eq, (4) will take the form
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gince in that case the potential energy of the solid material as a whole and its kinetic energy of motion re-
main constant, i.e.,
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It follows from Eq, (5) that the steady case differs from the unsteady (transition) process in that the gas en-

ergy goes only to dissipation, This manifests itself experimentally as resistance of the bed to the passage
of gas through it.

In analogy with electrical resistance, the resistance of the bed to gas flow is given in steady-state con-
ditions by
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For the unsteady case the total bed resistance is
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where RT = \ TdV/vylt).
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We assume that the transition process is rather slow {i.e., quasisteady) and
Ry = R,. (9)

Equation (9) means that the bed resistance to gas flow associated with dissipation in unsteady conditions is
equal to the bed registance under steady conditions, It is known [7] that the resistance of a fluidized bed is
independent of the gas filtration speed, which means that Rt is constant and a characteristic of the system,

From Egs, ) and (9), following time-integration (during the transition process), we obtain a second
isoperimetric condition of the variation problem (2):
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Thus, the hydrodynamics of the fluidized bed is determined by solving the variational problem, i.e.,
finding a conditional extremum of functional (1) with the isoperimetric conditions (3) and (10), As is known
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[8], this kind of problem reduces to finding a condifion-free extremum of the following functional:
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i.e,, to the problem
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It is known [8] that the extremals of functional (11) are determined by the Euler— Lagrange equations:
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Equations (13) are a nonlinear system of differential equations in partial derivatives of first order,

describing the hydrodynamics of the fluidized bed. The system has eight equations for eight unknown func-
tions (yy. . .Yyg, and is therefore closed.

Following a transformation of Eq, (13) we write the hydrodynamic system of equations obtained for
steady conditions ((d/dt)vy¢) = 0) in the following form:
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We multiply Eq. (16) term-by-term by v} and substitute it into Eq. (14); following some transforma-
tions we have
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It can be seen from Eq. (18) that the total gas energy inside the bed, equal to 1/p,(1-¢€), is independent of
the coordinates and is a function of time. Allowing for this, it follows from Eq,(17) that the total particle
energy inside the bed (1/2.)w2 + gz, equal to 1/p_¢, is also a function only of time, Then, from Eq. (15), fol-
lowing transformations, we obtaln finally the mass balance equatwn for particles

_at_ (ppg) = — (ppawi). (19)
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The analogous relation for the gas is Eq. (16). Equations (14) and (15) are modified momentum balance
equations for the gas and particles, respectively. Equation (17) gives the energy balance in the system,
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In this study we do not introduce a detailed description of the nature and the laws of interaction be~
tween the solid material and the gas stream. We replace this by an integral description of these interac-
tions, i.e., the power dissipation (9) in the bed, which we consider as embodying the whole set of local char-
acteristics of the interaction between the gas stream and the solid material in the fluidized bed, In this
case the actual system is replaced by the following simplified model., Two mutually permeable fluids, the
energy of which at any time instant does not vary throughout the space, are in motion in continuum phase
space, There ig an energy drain with time (dissipation) in the system, this being also uniformly distributed
over the phase space continuum,

We examine the question of the possible existence of particle concentration fluctuations in the bed in
the region w, > wy, Wy From Eq. (15) we obtain
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We evaluate the term @ /p_«8p/8t as follows:
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It can be seen from the physical meaning of the term A4€ in Eq. (11} that it describes the power going
to hold particles in the bed and, therefore,
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Allowing for Egs. (22)-25), we convert Egs, (20) and (21) to the form:
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We note that we can assume from the physical sense of Eq. (11) that A; and A, are positive coefficients,

Let wy, be such that the difference appearing in Eq, (20a) is positive; we examine it under the condition
dwy/8x > 0; awy/ dy > 0, i.e., in a region where the particles are being accelerated horizontally, It follows
from Eq, (20a) that 8¢/0z > 0, i.e., € increases with height, On the other hand, it is clear from Eq, (21a) that
the left side of that equation increases under these conditions. It is evident from the structure of Eq, (21a)
that w, also increases. As w, increases, g—wy (dwy/0x + dwy/8y) and 8€/dz both change sign, The right
side of Eq. (21a) will decrease with decrease of €, and therefore w, Wwill also decrease until the gradient of
€ along the z axis becomes positive again, Andtheneverything is repeated,

Thus, from the above reasoning it is clear that oscillations in particle concentration can exist in the
fluidized bed, We substitute into Eq, (15) the value of 8¢/5t from Eq. (16):
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We investigate Eq, (26) in three special cases:

1) w;— 0, the particles only diverge or converge horizontally, From Eq, (26) with k = 3
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a) if € # 0, then 8¢/8x; —; b) if £€—0, 9¢/dx; is finite;
2) Wy 0, there is no motion of the particles in the y directioﬁ. From Eq, (26) withk =2
@26b)
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a)if €= 0, a/ay((1/2)w§) # 0, then 9&/9x; —; ) if £—0, a/ay((1/2)w§) # 0, then 92/8x; is finite;

3) (vi—wj) — 0, the particles and the gas move with the same speed. From Eq, (26a) we have: a) €0

then Bﬂ/axi is finite; b) if € = 0, then 8€/8x; —~ <,

Thus, we have shown qualitatively that there can be discontinuities in particle concentration in a
fluidized system. The variation of the functional (12), which reflects expenditure of the gas stream energy
in the transition process, describes the hydrodynamics of the fluidized bed in the approximation adopted,
and elucidates its basic features (self-oscillations, discontinuities of particle concentration).
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NOTATION

is the gas pressure;

are, respectively, the bed resistance under steady conditions, and that associated with
dissipation in the transition process;

is the dissipated power per unit volume of bed;

is the time;

are the gas and particle velocity, respectively;

are the gas speeds at the bed entrance under unsteady and steady conditions of fluid-
ization, respectively;

are the coordinates x, y, z and time t, respectively;

are the resolved components of the velocity of the particles along the axesx,y,and z;
represent €, p;

are the volume concentration of the particles and its mean value;
are coefficients;

is the gram-molecular weight of the perfect gas;

are the gas and particle density, respectively;

is the mean gas velocity.
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